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Abstract-Heat transfer from a horizontal finecylinder by mixed, forced and free convection is investigated. 
Theoretical correlations of the heat transfer when forced or free convection at small Reynolds or 
Grashof numbers is affected by the other comparatively slight free or forced convection respectively, are 
given by the expansion method similar to the cases of pure convection described in Part I. The effects of the 
slight convection on the heat transfer are expressed systematically by a parameter of PrRe’/NuGr. 
Experimentally, the heat-transfer behavior under corresponding mixed convections was observed by 
moving a wire in air enclosed in a large box either vertically downward, vertically upward or horizontally. 

The agreement between analyses and experiments is satisfactory especially in parallel flow. 

NOMENCLATURE 

a, radius of the circular wire; 

D, coefficient of the expansion term in the 
near-field solution; 

99 acceleration due to gravity; 

Gr, Grashof number (= gfiATa3/vz); 
h. average heat-transfer coefficient; 

k, thermal conductivity; 

1, length of the circular wire; 

NU, Nusselt number (= ha/k); 

WNuAi> difference defined by equation (4.31); 

A(l/Nu,),. difference defined by equation (4.32); 

P. dimensionless excess pressure (= P/pGig or 
Pa2/pv2); 

Pr, Prandtl number; 

r, 0, dimensionless cylindrical coordinates; 

Re, Reynolds number (= Uoa/v, Lila/v or 

V, a/v) ; 
T, temperature; 

t, dimensionless temperature 
(= T-T&,-T,); 

AT, temperature difference (= T,-- T,); _ 
uo, basic uniform velocity of forced convective 

flow; 
U1, VI, slight uniform velocities; 
U, V, velocity components; 

II, u. dimensionless velocity components in x- and 

*Present address: Technical Research Laboratory of 
Hitachi Shipbuilding and Engineering Co., Ltd., Sakurazima, 
Konohana-ku, Osaka, Japan. 

y-direction respectively (= U/U,, V/O0 or 

Ualv, Vajv); 

v, voltage drop between both ends of the wire 
maintained at a constant temperature; 

AU, voltage difference from the pure free 
convection case ( = V - VG) ; 

x .v, horizontal and vertical dimensionless 

distances from the center of the wire 

respectively (= X/a, Y/u). 

Greek symbols 

P, expansion coefficient; 

tl, similarity variable for predominant free 
convection [ = (Gr00)“4x~-2’5]: 

v, kinematic viscosity; 

5, similarity variable for predominant forced 
convection (= Re1’2.x- “‘y); 

P, density; 

@, stream function for predominant forced 
convection (da/lay = u, d@//c?x = -2~); 

Y, stream function for predominant free 
convection @Y/&J = -u, 8Y/dx = 11). 

Subscripts 

0, 1,2, order of expanded terms; 

c, for cross flow; 

G, for pure free convection; 

1, at the joining point; 

m, at the arithmetic mean temperature 

[= mw+w; 
P. for parallel flow; 
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R. for pure forced convection; 
M’, at the surface of the wire: 
%’ . at infinity. 

Superscripts 
_ 

circumferential average in the near field; 
^ 

circumferential average in the far field. 

1. INTRODUCTION 

THE PROBLEM of heat transfer from a body by mixed, 
forced and free convection has been studied for various 

geometrical configurations. The phenomena of the con- 
vective heat transfer from a horizontal or vertical wall 
with superiority of either one of forced or free convec- 
tion to the other were analyzed by use of series 
expansion in the similarity solutions [l&l]. In those 

analyses, the dependent variables are expanded so that 
the zeroth-order approximation and the first-order 
should correspond to the predominant convection and 
the inferior convection, respectively. Especially in case 
of predominantly forced convection along a horizontal 
wall, the slight vertical buoyancy has an appreciable 
effect on the basic flow through the pressure field. 
Joshi and Sukhatme [14] obtained theoretically the 
local heat-transfer rate from a horizontal cylinder to 
a transverse flow by mixed convection, assuming a thin 

curved boundary-layer around the cylinder at suffi- 
ciently large Reynolds and Grashof numbers and using 
the method similar to the cases of mixed convection 
along a plane wall. 

In regard to heat transfer from a very small body 
to a surrounding fluid, the parallelly mixed convection 
from a sphere at small Reynolds and Grashof numbers 
was solved by Hieber and Gebhart [5] only for the 
range of Reynolds and Grashof numbers limited by the 
relation Gr = O(Re*) as Re + 0, by use of the method 
of matching the solutions in the inner and outer 
regions. The incipient effect of buoyancy on the same- 
directional basic flow past a horizontal cylinder was 
investigated by Wood [16] mainly with series expan- 
sion in the similarity solutions, which is the same as 
the far-field solution for the case of forced convection 
with slight parallel free convection in the present study. 
Further, he discussed the incipient effect on the slanted 
upward basic flow at an acute angle 1 to the vertical 
line by putting Cr. cos c( in place of Gr and estimating 
the change in pressure across the entire width of the 
slanted upward wake. 

There are a few experimental reports about the heat 
transfer from a cylinder by mixed convection when the 
Reynolds and Grashof numbers are relatively large 
[668]. Those experimental data are scattered consider- 
ably when correlated with the parameter Gr/Re’ and 
the angle between the directions of forced and free 

convections. In the experiments made by Hatton, James 
and Swire [9] for the range of medium Reynolds and 
Grashof numbers (lo- 3 < Gr, < lo), it was attempted 
to express all the Nusselt numbers for the parallel, 

contra and cross combined-convections as a vectorial 
sum of the forced and free convective heat-transfer 
correlations. From the physical point of view. however, 
the concept of the vectorial sum seems to be irrelevant 
except for the case of parallel flow. 

At relatively small Reynolds and Grashof numbers 

(0.5 x 10m3 < BPrGr, < 6 x 10m3 for Pr = 6.3; 0.5 x 
10e4 < 8PrGr ui < 6 x 10e4 for Pr = 63), Gebhart and 
Pera [lo] carried out parallelly mixed convection 
experiments, but they did not propose any suitable 
parameters to correlate the results. The buoyancy effect 
on the forced convective heat transfer in cross flow at 

small Reynolds and Grashof numbers was investigated 
experimentally by Collis and Williams [ll], who 

derived a rough criterion for the onset of buoyancy 
effect that Re = 1.85 Gr0’39. 

It is the puypose of thz present study to obtain the 
systematical synopsis of the heat-transfer character- 
istics from a horizontal infinite fine wire by mixed 
convections at small Reynolds and Grashof numbers in 
representative combinations of the directions of the 
forced flow and the buoyant force. that is, in parallel, 
contrary and cross flows. When either one of the forced 

or free convection is subordinate to the other, 
theoretical solutions can be examined in the similar 
manner to the cases of pure convection described in 
Part I. Experiments were carried out for the three 
types of mixed convections by use of a horizontal long 
fine wire moved in air enclosed in a large box. The 
differences of the heat-transfer rate from that by pure 
free convection at the same Grashof number were 
precisely measured so as to examine the validity of the 
analytical results in detail. 

2. DESCRIPTION OF ANALYSES 

Taking the same configuration of the problem as 
the cases of pure convection described in Part I. we 
can use the same governing equations and then the 
variables should be rendered non-dimensional by the 
units corresponding to whether the forced or free con- 
vection is predominant. For cases of the predominant 
forced convection, the basic uniform flow is taken in the 
s-direction and its stream function is defined by 
?@/ls_r = 11 and S@/?.u = - tl. while for cases of the 
predominant free convection, the upward convective 
flow is taken in the y-direction with the stream 
function defined by SY!/S?, = -U and M/&X = L;. The 
boundary conditions are considered as 

t=l,u=o=O on r2 = x2+y2 = 1, 

t+O.u+l or 11 or tl+Re as r-+1x1. 
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together with the other suitable behavior of the velocity 
field at infinity. As in Part I, the surrounding tempera- 
ture-field about the heated cylinder is divided into the 
two fields, the near conduction-field and the far 
convection-field, which can be joined up smoothly to 
determine the heat-transfer characteristics. 

Since the near-field solution is irrelative to the 
convective flow direction, it can be identical with that 
for pure convection so that the circumferential average 
temperature defined by 

is approximately given by either 

Q f= l-Nulnr+D 
s 

:i(r-:)‘dr, (2.1) 

or 

f= l-Nulnr, (2.2) 

(in detail, see Part I). Comparison with experimental 
results indicated in Part I that equation (2.1) is 
preferably used w’len the free convection is dominant, 
while equation (2.2) is favorable for cases of the pre- 
dominant forced convection. 

The far-field solutions are obtainable by the con- 
sideration almost similar to that of the mixed convec- 
tion along a plane wall. The dependent variables in 
the far field are to be expanded so that the zeroth- 
order approximation should represent the predominant 
convection and the first-order the other inferior convec- 
tion. The far-field solution including the approxima- 
tions up to the second-order could be joined up 
smoothly to the near-field solution to give the effect 
of the slightly superposed convection on the heat- 
transfer correlation. 

3. DESCRIPTION OF EXPERIMENTS 

(i) Equipment 
The equipment consisted of a large box maintaining 

a still air in it, a long fine circular wire mounted on a 
support-rig which is movable at a constant speed, an 
electrical heat-supply and a measurement system. 

The test enclosure of the wooden box was 180 cm in 
length and 80 x 80 cm’ in cross-section. The tempera- 
ture of the air in the box was measured with fifteen 
thermo-couples placed at various positions, within 
accuracy of +0025”C. 

Tungsten wires of diameters from 0.00064 to 000262 
cm and of lengths from 1.5 to 29cm were used as 
test specimens. The diameter was measured by means 
of microscopic photographs, of which accuracy was 
about 5 per cent for the finest wire due to the obscurity 
of the fringes of wire in nhotoaranhs. The deviation of 

the cross-section shape from a circle was relatively 
small. The length of wires was measured by a travelling 
microscope. The calibration for the temperature coeffi- 
cients of electric resistance was carefully carried out in 
a small metallic box immersed in an oil bath maintained 
at a constant temperature within +O.O5”C and showed 
similar characteristics to those reported in the reference 
[12] for fine drawn tungsten-wires. The temperature 
coefficients shown in Table 1 varied with a discontinuity 
at the diameter of 00010cm because wires of the 
diameter less than O.OOlOcm were refined with the 
electrolytic etching. The surface contamination of wires 
was not apparent throughout the period of these tests. 

Table 1. Characteristics of wires used 

Diameter 2a 
(cm) 

Temperature 
coefficient of 

resistance 
Aspect ratio 
(//a x 10-q 

090064 0.00355 0.45,0.58, 1,7,2.1 

(0.00077 0.00366) 
000088 oGO377 0.50, 1.1,2.2,2.3,2.5 
000164 OGO366 0.55, 1,1,2.1,2.4,3,9 

(0.00222 0.00393) 
0.00262 0.00409 0.51.0.57.2.2 

The shape of wire-supports as shown in Fig. 1 was 

employed to reduce the influence of disturbance caused 
by its prongs which were common to the three types 

FIG. 1. Wire support geometry (the 
whole height = 35-45 cm) 1, Tung- 
sten wire; 2, About 0.02 cm dia steel 
prong; 3, O.lcm dia steel rod; 4, 
0.25cm dia brass pipe; 5, Bakelite 
insulation; 6, Screw adjustment of 
tension; 7,0,6cmdia sustained pipe; 

8. Electric iake. 

HMT Vol. 18. No. 3-D 
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of mixed convections. The test wire was mounted by between mixed and free convections, AV = ir- i& 

spark welding on the support prongs of 0.1 cm dia Figure 2 (c) is a typical record of the voltage drop for 
steel rod and tension was applied by a screw adjust- the cross-how convection. 
ment. 

The wire was moved linearly at a constant speed by a 
long big screw attached to the support. The time lag 
attaining to the constant speed was made negligible by 

use of a big-powered motor and an electromagnetic 
clutch. The movable length of the wire was about 80 cm 
in the longitudinal direction of the box. 

A commercially available hot-wire anemometer of 
constant-temperature type with the chopper-type DC 
amplifier was used as the electric power supply to the 
wire. The voltage drop between both ends of the wire 

and the voltage drop corresponding to the current 
through it were measured by a digital voltmeter of 

five-digits display at 1.3 samplings/s and recorded with 
a vigicorder through a Digital-to-Analogue converter. 
The wire speeds were counted digitally with a photo- 

transistor. 

(ii) Experimental procedure and observation 
At each constant temperature of the wire, namely at 

each fixed Grashof number, experiments were run in 

series from pure free convection through mixed convec- 
tion to pure forced convection in about 3 h. In order to 
calm the air in the box after each run, a sufficient 
time interval of 1%20min was taken before starting 
next run. The variation in the electric resistance of the 
wire within one test run was too small to be detected. 

The temperature difference between the wire and the 
air in the box, AT = T, - T,, was maintained as small 

as 12-30°C in order to reduce the temperature loading 
effect. The air in the box had a small vertical 
temperature difference and a negligible horizontal 
temperature difference. The vertical temperature differ- 
ence was less than about 0.4”C even when the room 
temperature around the box changed considerably. 
The air temperature in the box increased slightly about Fm. 2. Example of the trace of voltage drop. 
0.5”C during a series of test runs. (a) Parallel flow; (b) Contrary flow; (c) Cross 

For the cases of mixed convections in parallel and flow. 

contrary flows, the equipment was erected so that the 

longitudinal direction of the box, namely the moving Mechanical vibration was sometimes observed at the 
direction of the wire, could be in a vertical line. In these support in the case of nearly pure forced convection 
cases, by the small temperature stratification, the with the longest wires of diameters 0.00164 and 0.00262 
voltage drop was slightly influenced as seen in Figs. cm. In this case, similar fluctuation of the supplied 
2 (a) and (b), where the upper two of four or five voltage at frequency of about 30 Hz was also observed 
digits displayed on the digital voltmeter were cut off on the oscilloscope. However, it had no significant 

to record only the lower third and fourth digits influence upon the output of the digital voltmeter which 
analogically. The variation in the infinity temperature was the average in 200 ms. 
or the voltage drop with the height resulted in a small The experiments were carried out in the range of 
variation in the basic Grashof and Nusselt numbers, Gr, = 10-7t010-5andRe, = 0,4 x 10e4t05 x lo-‘. 
among which the latter was less influenced. The The main source of errors in Gr, and Re, was the 
difference between two parallel inclined lines as shown measurement of the diameter, while the stratification 
in the figures was considered as the voltaee difference Y of the air temperature and the estimation of the 
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longitudinally averaged wire-temperature caused rela- 
tively small errors in Gr, and Re,,,. The physical 
properties of the air used in non-dimensional para- 
meters were evaluated in the same manner as the cases 
of pure convection, that is, at T, or T,. The subscripts 
co and m denote the properties evaluated at the 
infinity temperature T,, which is the temperature at 
the distance of 1Ocm from the side wall of the box 
in the horizontal plane including the wire, and at the 
arithmetic mean of the wire and infinity temperatures, 
f( T, + T,), respectively. 

For pure convections, the effect of the metallic 
thermoconduction from the wire to the support prongs 
had been analytically corrected [13]. Such correction 
had derived nearly constant Nusselt numbers at a given 
Grashof number or Reynolds number for l/a = 5000 to 
40 000, being less than 0.5 per cent at l/a = 20 000. The 
Nusselt numbers for mixed convections were also 
corrected in the same way. 

The effect of the temperature jump at the surface due 
to the fineness of wires was considered to be 
negligible because the corresponding Knudsen number 
was about 0.02 for the finest wire. Even at the maximum 
Knudsen number, the correction was less than 1 per 
cent after the evaluation by Collis and Williams [ll]. 

4. PARALLEL FLOW 

(i) Free convection with slight parallel forced convection 
We consider a comparatively slight uniform flow in 

the opposite direction of gravity, namely in the y- 
direction, in addition to a predominant free convection 
flow in the same direction at small Grashof numbers. 
The uniform flow has the velocity at infinity, 
V(X = &co) = V,a/v = Re, which cannot be satisfied 
with the expansion terms for the case of pure free 
convection described in Part I. Dependent variables 
in the far field are to be expanded so that the 
zeroth-order approximation could represent the pure 
free convection and the first-order approximation the 
uniform flow with the above boundary condition. With 
the same similarity variable r] as the case of pure free 
convection, the stream function Y, the temperature t 
and the excess pressure p will be expanded with respect 
to Rey-“‘(<c l), as follows: 

Y = ~~‘~{71~.Ij/~(tl)+Rey-“~~l,.~l~(~) 
+(Rey- 1/5)2x2p *1(12ph)+...)> (4.1) 

t = ~-~‘~{0~.e,(ll)+Rey-“~0~;8~,(r]) 

+ (Rey -“5)Z02p.eZp(~)+...}, (4.2) 

P = y-4’5(r,,.Y~p(?)+Rey-“5r~,.Y~p(?) 

+ (Rey - 1’5)2r2p. y2p h)+. . .}> (4.3) 

where rl = (Gr@,J114~y- 2’S The approximations up to 
the fifth-order produce a set of the boundary-layer 
type equations and the sixth-order corresponds to the 

first-order approximation for the case of pure free 
convection. 

The zeroth-order approximation is the same as that 
for the case of pure free convection. 

- $& + $2 =+;+e,, (4.4) 

+AJ = - ;e& (4.5) 

r/=o:$e=$g=o,0e=l; 

~-*co:r&-+O; 
(4.6) 

O,, = 
i 

1 
- PrGr’i4Nu-’ m$&d~ -4’5. 
n s 1 0 1 

The equations and the boundary conditions for the 
first-order approximation become 

-~*~h,+flLo~~~=~;b+sl,, (4.7) 

~~;,e,+~~r,eb+~~bs,,+~lLos;, 

=-- jr @iP, (4.8) 

rl =o :&= I& = e;,= 0; 

where nrP = (Gr@o)-1/4 and Or, = Gr-1’20b’2. The 
boundary condition r+YrP(co) = 1 means that the u- 
velocity component of the first-order has the magnitude 
or order of unity. The last integral condition is 
always satisfied with equation (4.8). Equations (4.7) and 
(4.8) can be solved numerically by means of super- 
position because of their linearity. The upward velocity 
component I&, and the temperature elP calculated by 
the Runge-Kutta-Gill method show that the upward 
flow is slightly stronger and the temperature is slightly 
lower than those for pure free convection (the zeroth- 
order approximation) although r&,(O) < 1. 

Consequently, the circumferential average tempera- 
ture 

k’ mtdx 
s nr 0 

is z = A0 $JNuGr)31sr-Ly-1’s 
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The necessary and sufficient conditions that equations 
(2.1) and (4.10) are to be joined up smoothly at r = r, 
are 

t= ~ di dt d2t d2i 
’ z=G’ dv’=du” 

The unknowns rj, D and Nu are thus determined under 
the conditions that r = y >> 1 and that the second term 
of equation (4.10) is sufficiently small compared with 
the first, namely Re(NuGr)- ‘I3 K 1. 

(4.11) 

(4.12) 

& = flnE - iln(NuGr)+Q, 

E = 3.1 x (Pr+9.4)“2Pr-2, 

170 42 -‘I6 
QF,,, 25 

0 
&7'6A PI-l/3 IP (4.13) 

The third term of equation (4.13), (PrRe3/NuGr)‘/3, 
represents the effect of a slight uniform forced flow 
on the free convection, being proportional to Re. The 
calculated results are shown in Fig. 3(a). The relation- 
ships of joining equations (2.2) and (4.10) give the 
coefficient QP different only about 3.5 per cent from 
that by equation (4.13) which joins equations (2.1) and 
(4.10). Since the coefficient Q, has the negative sign, 
the heat-transfer rate is slightly larger than that for pure 
free convection. The coefficient Q, is not a noticeable 
function of Pr as seen in Fig. 3(a), so that the effect of 
Pr on Nw is considered to be expressed approximately 
in the form of (PrRe3/NuGr)“3. The restrictions for the 
results are derived from the conditions that rj >> 1. 
ReyJ’ ‘I5 << 1 and Re(NuGr)- 113 CC 1, and are expressed 
as 

If the same similarity variable 5 as the pure forced 
convection is taken, the dependent variables in the far 
field may be expanded so as to make the zeroth-order 
terms correspond to the pure forced convection and the 
first-order to the buoyancy force. Therefore, the stream 
function cb, the temperature t and the excess pressure p 
will be expanded with respect to Grx’12( CC 1) as follows. 

0 = .w1’2~Fo~fo(~)+Gr~1i2Flp.fip(;) 

+ (Grx”‘)‘F2;f2,(g)+. . .}, (4.15) 

t = x- I:2 {Go~go(~)+Gr~1’2G~,~g~p(ir) 

+(Grx1’2)2G2p.g2p(<)+...jr (4.16) 

p = x-l {Ho,~ho,(~)+Grx1’2H,,~/~,,(~) 

+(Grx1i2)2H2,.h2p(<)+...), (4.17) 

where 5 = Re’l’x- ‘12y. These expansions are valid only 
for the region of 1 K r << Gr-‘. It is noted that these 
may be equivalent to the re-expansions of the zeroth- 
order approximation terms for the case of pure forced 
convection (i.e. these expansions hold only in the 
boundary-layer type equation). 

The solutions for the zeroth-order have the same 
form as the case of pure forced convection. 

fo = ;. (= #o,, (4.18) 

go = Goooexp 
! > 

-_bPrr2 , (5 Goooxoh (4.19) 

Gooo = go(O) = JRP~-“~R~-~Nu, (4.20) 

where F. = Re”’ and Go = Re”‘. 
The equations and the boundary conditions for the 

first-order are 

;xr;, - ;fof;p-f~flp =fiy+go. (4.21) 

- ;&go - ;fbH;, -f1pgb = &g;,, (4.22) 

< =o :f1,=f;', = g;, = 0; 
5+ai:&+O, glp+O, I 

(4.23) 

where F1, = 1 and Gr, = Re3. By use of equations 
(4.18), (4.19) and (4.23) equations (4.21) and (4.22) are 
integrated as follows: 

Pr*Gr C 10W3, (4.14) 
f’&= Gooo[&exP(-~PrLi2) 

2JPr -__ 
1 -Prexp 

+<(&J:exp(- iPr;‘jdC 

- & j:exp(-- t:‘)@)l, 

(ii) Forced convection with slight parallelfree convection 
Next, we consider a slight buoyancy force in the x- 

direction in addition to the predominant uniform flow 
in the same direction. Then, the buoyancy term 
(Gr/Re2)t must be contained in the momentum equa- 
tion in the x-direction. (- Goooh,). Pr # 1, (4.24) 
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FIG. 3. Calculated results in parallel flow. (a) Free convection with slight 
parallel forced convection: (b) Forced convection with slight Parallel free 

convection. 

t (= G00041p), 

Pr = 1, (4.25) 

glp = -Prexp ( 1 - iPr5’ 

[ = (Gooo)~xIJ. (4.26) 
From numerical results, it is found that the velocity 
component in the x-direction becomes slightly larger 

and the temperature becomes lower than those for the 
case of pure forced convection (the zeroth-order 
approximation). 

Consequently, the circumferential average tempera- 
ture is given by 

i=f m 

s 

Nu 
tdy=--- 

TJ 0 PrRe 

1+ NuRe-5’2(Grx1’2) 

The condition that equations (2.2) and (4.27) are 
joined up smoothly at r = rj gives 

T-F dt dt^ 
- 3 G=d,> 

from which the unknowns rj and Nu are determined 
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with the restriction r = x >> 1 and the approximation measured as in Fig. 2 (a). The curves of l/Nu, against 

s 

00 
NuRe- 5/2Grx*/2 

log(Re,) at a fixed Grashof number are shown in 
Xlpdt << 1. 

0 
Fig. 4 for 20000 < l/a < 25 000. These experimental 

rj=P& 
( 

1 NuGr 
results were almost independent of the aspect ratio of 

l +jPrp,Re3 3 
> 

wire in the range of I/a = 5000 to 40000 and they were 

not apparently influenced with the diameters of 

s 
= pp = Pr”2 

horizontal prongs of the support (0.02 to 0.5cm dia). 
XtrdS. (4.28) 

0 
Even if a comparatively small box of test-section area 

25 x 40cm2 was used. the same results could be 
1 NuGr 

- = 1 - ln(PrRe)+Prp,R;S. (4.29) obtained as far as the vertical prongs of the support 

Nil were placed at the distance larger than 5 cm apart from 

= I -1n ( Pf Re) 

log Re, 

FIG. 4. Heat-transfer correlation in parallel flow fat 
20000 < l/a < 25000. 

0, a = 0.00032cm; Gr, = 1.42 x lo-‘; 

a = 0.00044cm. 
A: a = OWO82cm~ 

Gr, = 3.2 x lo-‘; 
Gr, = 1.67 x 10-6; 

0, a = 0.00131 em; Gr, = 7.5 x 10-6. 

The third term of equation (4.29), NuGr/PrRe3, implies 
the effect of slight parallel free convection on the forced 

convection, being proportional to Cr. Nu increases with 
Gr since the coefficient P, is negative as shown in Fig. 
3 (b). The restriction for equation (4.29) may be 
simplified as follows : 

PrRe 6 1, EC< 1, 
PrRe3 

(4.30) 

which satisfy incidentally the peculiar condition 
Grr!” << 1. J 

(iii) Experimental results and comparison 
The horizontal test-wire was moved downward 

vertically and the voltage drop between both ends of the 
wire to maintain it at a constant temperature was 

the side wall of the box. Although the variation in 
l/Nu, against log(Re,) is considerably smooth, each 
curve at a fixed Grashof number does not always 
approach a common line asymptotically as for the pure 
forced convection. This is considered to result from 
measurement error of the diameter of wire. 

The comparison of the experimental result with 

equation (4.13) for free convection affected by slight 
parallel forced convection is shown in Fig. 5 (a) for 

20 000 & l/a < 25 000, where the solid line represents 
the third term of equation (4.13) for Pr = 0.72. The 
ordinate A(l/Nu,), is defined by 

A(k)G=&(&)6 (4.31) 

where the subscript G denotes the value for the case 
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(-)’ PI I?=; 
No, Gr, 

k-4 

(b) 

FIG. 5. Comparison ofthe analyses and experiments (20000 < I/a $25000). 
(a) Free convection with slight parallel forced convection; (b) Forced con- 

vection with slight parallel free convection. 

of pure free convection. The agreement between both where 
results is considerably good in the region of 

(PrR&Nu, Gr,) 1’3 < 0.6. 
The comparison of the experimental result with 

equation (4.59) for forced conv&tion affected by slight 
parallel free convection is shown in Fig. 5 (b) for 
20000 < l/a < 25000, where the solid line represents 
the third term of equation (4.29) for Pr = 0.72. To 
eliminate the deviation due to the error of the diameter 
measurement, we rewrite equation (4.29) as 

f_= C- 
N&II 

with an introduction of constant C, which is to be 
determined so as to make the curve fit the experimental 
point at the largest Reynolds number in a definite 
Grashof number, and then use the ordinate defined by 

A(k>,=k-(k)n (4.32) 

The solid points in Fig. 5 (b) represent the refered 
points to determine C in the above equation, which 
is close to unity. The agreement in Fig. 5 (b) is also 
satisfactory in the region of (PrReQNu, Gr,)-.’ < 025. 

Here, we consider the comparably mixed free and 
forced convection. If we put Nut = Nu, with C = 1, 
the following relation will be obtained: 

PrRe3 e3 -= 
NuGr 3.1(9.4 + Pr)“’ ’ 

(= Ne,). (4.33) 

The parameter PrRe3/NuGr implies the ratio of the 
heat-transfer rate of pure forced convection to that of 
pure free convection. Then, an attempt to correlate 
the difference A(l/Nu,), with (PrReQNu, Gr,)‘13 for 
the comparably mixed convection of parallel flow is 
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made in Fig. 6. It is found that the experimental Reynolds number, the same result (4.13) can be 
points in the figure can be expressed by the following obtained. 
correlation 

PrRe3 1’3 
(5.1) 

-A&= Q&s>"3 

~NG=ilnE-:ln(NuGr)-Q, 
i ) NuGr' 

in which the restrictions are 

- (e, (Ns)‘:J j’. (4.34) Pr’Gr < 10m3. 
ij3 (( l, 

(4.14) 

FIG. 6. Comparably mixed convection in parallel flow. 0, +, 0, 0. see the 
legend of Fig. 4. 

This correlation, which is shown by the dotted line 
in Fig. 6, gives a good approximation in the region of 

(PrReaNu, Gr,) l/3 < 1.6, although this does not con- 

tinuously connect with that for the case of forced 
convection with slight parallel free convection. 

The comparison of the correlation (4.34) with the 

experimental points by Gebhart and Pera [lo] is shown 
in Fig. 7 for Pr = 6.3 and 63, where the solid straight 
line is the exter-polated line of equation (4.13) and the 
dotted line is equation (4.34). Although they did not 
directly measure the difference from the pure free 
convection and had relatively large values of Pr2Gr,, 
the agreement especially at Pr = 6.3 is good. 

5. CONTRARY FLOW 

(i) Free convection with slight contraryfbrced convection 
Here, we consider a comparatively slight uniform 

flow in the opposite y-direction, namely in the gravita- 
tional direction, in addition to the predominant free 
convection in the y-direction. The corresponding 
boundary condition becomes v(x -+ + co) = - V,a/v = 
-Re. Therefore, except with the negative sign of the 

(ii) Forced convection with slight contrary free 
convection 
For the same consideration as the above for predomi- 

nant free convection, the following results are obtained: 

1 NuGr 
- = 1 - ln(PrRe)-P,- 
Nu PrRe3 ’ 

(5.2) 

NuGr 
PrRe < lo-‘, ~ 

PrRe3 
<< 1. (4.30) 

(iii) Experimental results and comparison 
The wire was moved upward vertically in the box. 

In this case, stable voltage drops were not always 
observed as seen in Fig. 2 (b), although they were 

relatively stable at smaller Reynolds numbers. This 
may be accounted for by the fact that the moving wire 
would overtake the unstationary or turbulent upward 
wake flow of itself. 

The curves of l/Nu, against log(Re,,,) at a fixed 
Grashof number are shown in Fig. 8. Asterisks in the 
figure at Gr, = 1.42 x lo-’ and 7.5 x lO-‘j represent 
the experimental data for wires of the small aspect 
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Pr = 6.3 

0 I 

(4 

Pr= 63 

(b) 

FIG. 7. Comparison with the experiments by Gebhart and Pera for Pr = 6.3 
and 63 in comparably mixed convection of parallel flow. A, Pr%r, = 
0.8 x 10-j; I/a = 16000; !J,Pr’Gr, = 0.8 x 10V3; I/a = 24000; O,Pr*Gr, = 

0.4 x 10e3; I/n = 24000; A, Pr’Gr, = 0.4 x 10m3; I/a = 32000. 

ratio of l/a = 5800 and 5100, respectively. These give 
appreciably lower values of the inverse Nusselt number. 
Even with the largest aspect ratio, the end effect was 

not found to be sufficiently diminished. These results 
give the difference of the Nusselt numbers, [ { (Nu& - 

wn)l(~~In)Glmax, to be about 0.02, which is very small 
compared with the value of about 0.2 obtained by 
Hatton, James and Swire [9] at medium Grashof 
numbers Gr, = 10m3 to 10. 

The comparison of the analysis and the experiment 

for free convection with slight contrary forced convec- 
tion is shown in Fig. 9 for 20000 < i/a < 25000. The 
theoretical result, the third term of equation (5.1) 
predicts the difference of the inverse Nusselt number 
to be about twice the experimental value. This discre- 
pancy may be caused mainly by the deficiency of the 
aspect ratio. If we make the coefficient Q, half in 

equation (5.1) 

Qp-e,ex = 0.5 x Q,, (5.3) 
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Fm. 8. Heat-transfer correlation in contrary flow. 0, +, 

0. 0. see the legend of Fig. 4. 

the resulted relation can approximately express the 
experimental results for 20 000 d l/a < 25 Ooo in the 
region of (P~R~;~JNu,,,G~,)‘~’ d 0.6, being shown by 
the dotted line in Fig. 9. 

pure forced convection. Equations and boundary 
conditions for the zeroth-order approximation are then 

,, 
.f&.foc + 2K = - igo0 (6.4) 

sac = Gooexp([~ - iPrfb,d;), (6.5) 

<- +cr,:f;,+ I, Yoc-+O; 7 
x 

- SCI 
f‘&gord< = 2~s; 

I (6.6) 

s n” (j&(1-,f&-hoJd< = 0. 
-33 1 

where F,, = Re- I”, Go< = Gr- ‘Re5j2, Ho, = Re”’ and 

Go0 = got (0). The last integral of the flow-drag condi- 

tion yields 

h,,(< -+ co) = -/I,,(< + - X), 

which is the boundary condition for ho,, signifying an 
excess pressure difference between the upper and lower 

_uo 2 

-12 

q 01 
’ 

FIG. 9. Comparison of the analysis and the experiment (20 000 < l/a < 25 000) 
in free convection with slight contrary forced convection. 

6. CROSS FLOW’ 

(i) Forced convection with slight cross free convection 
The momentum equation in the main flow direction, 

namely in the x-axis, has no gravitational term and 
then dependent variables a’, t and p in the far field 
are to be expanded so that the slight bouyancy force 

in the momentum equation in the y-direction could 
affect the base flow through the excess pressure p. 

@ = .~“Z{Foc.foe(5)+x-1’2FI,~fir(~) 

+(~-~‘~)~F~~~.f~~(5)+~~~)~ (6.1) 

t = ~-~‘~{Goc~goe(~)+x-~‘~G~~.g~~(~) 

+(x-“2)2Gzc~g2c(5)+...}, (6.2) 

P = lHoc~~o,(5)+x-“2H,,.h~,(~ 

+(x-1’2)2H~c.h~c(~)+...}, (6.3) 

where < = Re”2x-1’2y. Only the expansion for the 
excess pressure p is different from that in the case of 

infinities. When Go0 << 1, these equations can be solved 
by the following re-expansion method with respect to 

G 003 

fo, = ~0(5)+Goo~,(5)+G~0~2(5)+.... (6.7) 

got = Goox~(S)+G;OXI(S)+G&,X&)+ ‘.‘I (6.8) 

The zeroth-order approximation for the re-expan- 
sions gives the same solution as equations (4.18) and 
(4.19) for pure forced convection. 

60 = & (6.9) 

x0 = exp ( ! - : Pr[’ (6.10) 

Equations for the first-order approximation are 

, (6.11) 

Xl =exP{(-tPr:i)(~PrS:m,d~~i. (6.12) 
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Here, we assume that the flow has no uniformly 
upward component, u(y + 03) = - u(y -+ - co), namely 
4. (co) = - 4. (- co), i.e. that the direction of the whole 
stream lines of the predominant uniform flow in the 
horizontal x-axis remains unchanged even if the local 
flow directions are influenced. The boundary condi- 
tions for the first approximation are then given by 

<-*co:Cp;+o, r$;‘-0, 

&(a) = --&(-co). 1 
(6.13) 

Then, equation (6.11) can be solved as follows : 

Pr#l; 

$;=(;+f5’)exP(-at’), Pr=l. (6.14) 

These solutions (6.13) and (6.14) give 4; and x1 of odd 
functions and 4r of an even function with respect to 
y, which result in zero-average temperature and zero 
vertical velocity component at y + & co. Equations and 
boundary conditions for the second approximation are 

Cm;+26;=5exP(-aP~j~(,de)-,,m;, (6.15) 

(6.16) 

~=o:&=~;=o; 

42(m) = -$2(-co). 

(6.17) 

Integrating equation (6.15) yields 

&=exp(-~<2)[j~exp(+~2) 

x i{(fPr< j:&dt)exp( - tPrt2) 

which gives 42 of an odd function with respect to y 
and a secondary suction flow at upper and lower 
infinities. The value of Go0 can be determined from the 
boundary condition (6.6) as 

G 
00 

=I NuGr ug NuGr 3 
a1 PrRe “-ol;* PrRe (4 ’ 

~l-x~~~-p(-tPr~z)dS=~~(~r). 

+e% -iPr 181dg d& (6.19) 
s i 

The stream line of @ = 0 can be approximately 
expressed by 

y = Re- “25b= o. x112, 

tc=o = - 41Woo 

+ $~‘#M%#4(0) (6.20) 

The circumferential average temperature is thus 
given by 

-;Pr 
j I 

i42d< d& (6.21) 
0 

Similarly, equations (2.2) and (6.21) are to be joined 
up smoothly at r = rp 

FE; dt dt 
’ dr=dr’ 

By use of the approximations r cc 1 and Go0 CC 1, the 
unknowns are determined as follows 

(6.22) 

A= 1 - (6.23) 

The effect of the slight free convection is also expressed 
by the parameter NuGr/PrRe3, being proportional to 
Gr2. The heat-transfer rate increases slightly with Gr 
because of P, < 0 as shown in Fig. 10. The restriction 
for equation (6.22) is similarly written by 

PrRe < lo-‘, 2 << 1. (6.24) 

In this case, even if the joining point is replaced on 
the stream line of @ = 0 instead of the x-axis, the 
same relation of heat transfer is obtained since 
equation (6.21) is independent of x. 
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The equations and the boundary conditions for the 

‘? 1 rr-_,_ ,,, 

::i::zL - ~~i;;;~~;~+02c, (6.31) 

,’ 0 , I 2 
8’ \ 

\ log Pr 
\ 

/I -05L~ \ 

b, 

FIG. 10. Calculated results in forced convection with slight 
cross free convection. 

where rcZc = (GrO,)- 1!4 and (1 = Gr-l’2@-‘!2, 

(ii) Free convection with slight cross forced convection The stream line of Y = O’Lan be app:oximately 
For a slight uniform flow in the x-direction added to expressed as 

the predominant free convection in the y-direction, the A,‘5 
first-order approximation of the expanded solution in ’ = n* =’ ” ’ 
the far field represents the effect of slight cross r/Y_0 = _ Vie(O) 1 
uniform flow. Therefore, under the restriction of 

c”bo{rr j; ipZodnji” 

Rey”’ << 1, the dependent variables are expanded as 
follows Re. (6.34) 

Y = ~~‘~{~~.cp~(~)+Rey~‘~~~,.c~~~(‘l) 

+ (Rey2i5)2z2,. cpzc (q) + .}, (6.25) 

t=y -315{00.e,(~)+Rey2’501,.Ul,(r) 

+ (Rey2i5)202,. 02c (a)+. .}, (6.26) 

P = y-4’5{r~c.~~c(~)+Rey2’5rl,.lil,(rl) 

+ (Rey2’5)2r2, ‘y2c (q)+. .}, (6.27) 

wnere rl = (Gr@o)114~y- 2/5 These expansions corres- . 
pond to the re-expansions of the zeroth-order approxi- 
mation for the case of pure free convection. From the 

standpoint of the flow condition on the y-axis, it 
may be considered that for the vertical velocity and 
the temperature the zeroth-order approximations 

should be even functions of x, the first-order be odd 
and the second-order be even. The zeroth-order 
approximation gives the same as equations (4.4) (4.5) 
and (4.6). 

The circumferential average temperature is then 
given by 

If equations (2.1) and (6.35) are joined smoothly 
at r = rj, the unknowns could be given by 

rj = C, (NuGr)- 

The equations and the boundary conditions for the 
first-order become 

85 A 2c 4!5 Czac E ~ - C,4 
378 A0 

Pr-2’3, (6.36) 

D = CBk(NuGr)‘{l + !$C2Acr$ir3), (6.37) 

1 prRe3 213 
-= AlnE - iln(NuGr)+Q, NuGr 
Nu 3 (----1 ’ 

’ 
PrA;1’3Az,. (6.38) 

The restriction for equation (6.38) is similarly expressed 
as 

(6.39) 

It was found from the numerical computation of 
where rrrc = 1 and Oi, = Gr-1140i14. these equations that the maximum values of each 
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dependent variable became extremely large compared 
with the magnitude of the value at the boundary 
(plc (q -+ & co) = - 1 and that the integral of tempera- 
ture jErn f&dq became too small to be prevented 
from the computation error, although it seems from the 
existence of the asymptotic solutions at q + co that 
these equations have a possibility of finite solutions. It 
implies that secondary suction flow for the zeroth-order 
approximation at x + f co might be still larger than 
the uniform Row given by the boundary condition for 
the first-order at r = rj because of Re$‘5 << I. There- 
fore, from the viewpoint of physical grounds, the 
similarity solutions are not necessarily pertinent to the 
combined flow of this type. The usual profile method 
cannot be also easily employed because of the difhculty 
to assume the profile equations for the second-order 
approximation and the plume width which is able to 
vary appreciably with Pr. 

(iii) Experimental results and comparison 
The wire was moved horizontally in the box, in this 

case. The voltage drops had small deviations owing 
to the moving direction, as seen in Fig. 2 (c), and they 
were averaged arithmetically to obtain the experi- 
mental results. First, we investigated the temperature 
field of the plume affected by the uniform Row with 
a thermo-couple of 0.3 mm dia C-Cu. The positions of 
the maximum temperature of the plume are shown in 
Fig. 11. It is found that the trace of the maximum 

0 
0 IO 20 30 

X, cm 

FIG. 11. Trace of the maximum temperatures 
in the plume at Gr, - 8 x 10m6 for I/a = 22000. 
l,PrRe:/Nu,Gr, -0.0025;2,-0.006;3, -0.03; 

4, -0.075; 5, -0.2; 6. -055;7, -4. 

temperature in the plume may be appro~mately 
expressed by X = K * Y415 of equation (6.34) which is 
given by the dotted line in Fig. 11, although only the 
experiment at the smallest Reynolds number can satisfy 
the restriction (6.39) and Rey”’ CC 1. The curves of 
l/Nu,,, against log(Re,,J at a k&d Grashof number 
are shown in Fig. 12 for 20000 $ l/a < 25WO. The 

-+_+-+--+-- 

&__ __._.-‘“cA’ ‘4 

$ 
--6 

&_ . -‘J ” +=j 

-5 

FIG. 12. Heat-transfer correlation in cross flow for 
20000 C I/U < 25 000. 0, a = O@JO32 cm; Gr, = 1.30 x 
lo-‘; +, a = OWJ44cm; Gr, = 3.2 x lo-‘; 0, a = 
OQOO82cm; Gr, = 9.1 x lo-‘; A, a = 0.00082cm; 
Gr, = 151 x 1Om6; 0, a = 000131 cm; Gr, = 4.8 x 

lo-“; n , a = 0@0131 cm; Gr, = 8.0 x 10W6. 

figure shows the minimum point of the Nusselt number 
as pointed out by Ower [13]. 

The comparison of the experimental result with 
equation (6.23) for forced convection affected by slight 
cross free convection is shown in Fig. 13 (a) for 
20000 < l/a < 2_5ooO, where the solid points are the 
reference points to determine C and the solid line means 
equation (6.23). The ordinate A(l/Nu,), is given in the 
similar manner to equation (4.32) by equation (6.23). 
The experimental points may be regarded to give a 
rather satisfying relation of equation (6.23) in the region 
of (PrRe$/Nu, Gr,)-2 < 0.05. 

For free convection with slight cross forced convec- 
tion, the experimental points are shown in Fig. 13 (b). 
If the undete~ined coefficient Qc in equation (6.38) is 
evaluated at 

Qc-e, = 0% (6.40) 

the expe~men~l results may be roughly expressed by 
equation (6.38) in the region of (PrRe$Nu, Gr,)*13 < 
@2 as shown by the dotted line in Fig. 13 (b). 

Next, we show in Fig. 14 the experimental results for 
comparably mixed free and forced convection. The 
heat-transfer rates were considerably influenced by the 
aspect ratio l/a as shown in Fig. 15. Even with the largest 
aspect ratio at the largest Grashof number, the end 
effect, namely the thr~-~m~sionai effect, was not 
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FIG. 13. Comparison of the analyses and the experiments (20000 < 
l/a < 25000). (a) Free convection with slight cross forced convection. 

(b) Forced convection with slight cross free convection. 
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-0.3- 0 

FIG. 14. Comparably mixed convection in cross flow. 0, +, 0, A, 0, W, see 
the legend of Fig. 12. 
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expressed pertinently by the parameter of PrRe’/NuGr. 
For the cases of contrary and cross flows, the heat 
transfer rates increase with the aspect ratio of the 
wire at least in the range of 5000 to 40 000. 

2 3 

Re,x IO’ 

FIG. 15. Example of the influence of the aspect 
ratioofwireincrossflow at Gr, = 8.0 x 10m6. 

0. l/a = 22 000; x, l/a = 5700. 

sufficiently diminished. The maximum differences of the 
inverse Nusselt number, (A(~/Nu,,,)~},,,~~, which are 
given at the relation of (PrRe>Nu, Gr,) - 0.6, increase 
with increasing lja and Gr,, and then they could be 
roughly correlated with the product Grz3. (l/a) in the 
present experiment. 

7. CONCLUSION 

Heat transfer by mixed free and forced convection 
with either one of them dominant over the other is 
analytically investigated for parallel, contrary and cross 
flows with the expansion and the joining method. The 
correlation of the heat-transfer rate in the form of 
l/Nu, cau be systematically expressed as the power 
function of the parameter of PrRe3/NuGr. These 
theoretical results were in good agreement with the 
experimental results made by wires of l/a = 20000 to 

25 000 moving in air enclosed in a box. Even in such 
cases that the agreement is unsatisfactory, the experi- 
mental result can be correlated by the same analytical 
equation with the modified numerical coefficient except 
for the case of forced convection with slight contrary 
free convection. For the case of comparably mixed 
convection in parallel flow, the heat-transfer rate is also 
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